Reziprokalflächen

[420] Reziprokalflächen. Schreibt man die Gleichung einer Fläche n-ter Ordnung in Ebenenkoordinaten und ersetzt letztere durch Punktkoordinaten, so erhält man die Gleichung einer Fläche, welche zur gegebenen polarreziprok (dualistisch) ist und ihre Reziprokalfläche heißt.

Die Ordnung derselben ist n (n – 1)2. Sie besitzt im allgemeinen eine Doppelkurve von der Ordnung 1/2 n (n – 1) (n – 2) (n3n2 + n – 12) und eine Rückkehrkurve von der Ordnung 4 n (n – 1) (n – 2).


Literatur: Salmon, G., Analytische Geometrie des Raumes, deutsch von Fiedler, II, Leipzig 1880, Kap. 9, C.

Wölffing.

Quelle:
Lueger, Otto: Lexikon der gesamten Technik und ihrer Hilfswissenschaften, Bd. 7 Stuttgart, Leipzig 1909., S. 420.
Lizenz:
Faksimiles:
Kategorien: