[240] Prinzip von d'Alembert. Es dient zur Aufstellung der Bewegungsgleichungen eines materiellen Systems. Dieses bestehe aus den n Massen mi in den Punkten mit den Koordinaten xi yi zi, an welchen Kräfte Pi mit den Komponenten Xi Yi Zi angreifen. Zwischen den Koordinaten bestehe eine Anzahl von Bedingungsgleichungen Fk = 0, die zunächst unabhängig von der Zeit vorausgesetzt werden. Zur Zeit t haben die Massen die Beschleunigungskomponenten
Da das System Bedingungen unterliegt, so werden die Differenzen
nicht verschwinden, wie es bei einem System freier Massenpunkte nach dem Grundgesetz der Dynamik Kraft ist gleich Masse mal Beschleunigung der Fall ist. Diese Differenzen werden als Verbindungskräfte oder auch als [240] verlorene Kräfte bezeichnet. Das d'Alembertsche Prinzip sagt nun aus, daß diese Verbindungskräfte (verlorenen Kräfte) mit Rücksicht auf die Bedingungen des Systems zu jedem Zeitpunkt im Gleichgewicht sein müssen. Wären sie es nämlich nicht, so müßten sie in Verbindung mit den äußeren Kräften Xi Yi Zi den Massen mi andre Beschleunigungen als die vorausgesetzten erteilen.
Analytische Formulierung des Prinzips. Man braucht nur auf die Verbindungskräfte (verlorenen Kräfte), die mit Rücksicht auf die Bedingungen des Systems im Gleichgewicht sein müssen, das Prinzip der virtuellen Geschwindigkeiten anzuwenden und die virtuelle Arbeit derselben gleich Null zu setzen, so erhält man
wozu noch die infolge der Bedingungsgleichungen bestehenden Beziehungen zwischen den δ xi ... treten, z.B. für Fk = 0
Nichtholonome Bedingungsgleichungen werden unmittelbar eingeführt. Enthalten die endlichen (holonomen) Bedingungsgleichungen die Zeit t, so wird dieselbe bei der Differentiation behufs Bildung der Gleichung zwischen den δ xi ... nicht als variabel behandelt. Sind in nichtholonomen Bedingungsgleichungen Glieder mit d t vorhanden, so bleiben sie bei Anwendung des d'Alembertschen Prinzipes weg. Erweitert man den Ausdruck der virtuellen Arbeit der Verbindungskräfte durch die mit Faktoren λk multiplizierten linken Seiten der differenzierten bezw. nichtholonomen Bedingungsgleichungen und setzt man die Faktoren der einzelnen δ xi gleich Null, so ergeben sich die Lagrangeschen Bewegungsgleichungen erster Art:
Mit den endlichen und den nichtholonomen Bedingungsgleichungen bilden sie ein System von 3 u + k Gleichungen, das zur Bestimmung der 3 u-Koordinaten und der k-Multiplikationen λk als Funktionen der Zeit ausreicht.
Das d'Alembertsche Prinzip gilt nicht nur für kontinuierliche Kräfte, sondern auch für Momentankräfte oder Impulse. Um den analytischen Ausdruck für diesen Fall zu erhalten, denkt man sich den Ausdruck
mit dem Zeitelement d t multipliziert und innerhalb eines sehr kurzen Zeitraumes t integriert (wobei natürlich die δ xi ... als konstant zu betrachten sind), so erhält man
sind die Differenzen der Komponenten der Bewegungsgröße nach und vor dem Zeitraum τ,
die Komponenten der Impulse während des Zeitraums τ. Dazu treten die Bedingungsgleichungen. Die mit den Verschiebungen δ xi ... multiplizierten Klammergrößen können als Verbindungsimpulse bezeichnet werden, die sich infolgedessen nach dem d'Alembertschen Prinzip mit Rücksicht auf die Verbindungen das Gleichgewicht halten.
Literatur: d'Alembert, J., Traité de dynamique, Paris 1743; Lagrange, Mécanique analytique, 1. Aufl. 1788,2. Aufl. 1811; Jacobi, Vorlesungen über Dynamik, Berlin 1866; Ders., Werke, Supplement, band, Berlin 1884; Voß, A., Math. Annalen 1884, Bd. 25, S. 258.
Finsterwalder.
Brockhaus-1809: Johann Jacob d'Alembert
Brockhaus-1911: D'Alembert · Alembert · Prinzip · Archimedisches Prinzip
Eisler-1912: d'Alembert, Jean le Rond · D'Alembert
Kirchner-Michaelis-1907: Prinzip
Lueger-1904: Prinzip von Fourier · Prinzip von Hamilton · Prinzip der kleinsten Verschiebungsarbeit · Prinzip der Flächen · Prinzip der Erhaltung der lebendigen Kraft · Prinzip der Koexistenz elastischer Bewegungen · Prinzip des kleinsten Zwanges · Prinzip der virtuellen Geschwindigkeiten · Prinzip der lebendigen Kraft · Prinzip der Erhaltung der Energie · Dopplersches Prinzip [1] · Dopplersches Prinzip [2] · Archimedisches Prinzip · Chaslessches Prinzip · Gaußsches Prinzip · Prinzip · Prinzip der Bewegung des Massenmittelpunktes (Schwerpunktes) · Hamiltonsches Prinzip · Huyghenssches Prinzip
Meyers-1905: Alembert · Hamiltons Prinzip · Hadleysches Prinzip · Prinzīp · Huygenssches Prinzip · D'Alembertsches Prinzip · Archimedisches Prinzip · Dynamoelektrisches Prinzip · Dopplersches Prinzip
Buchempfehlung
Der lyrische Zyklus um den Sohn des Schlafes und seine Verwandlungskünste, die dem Menschen die Träume geben, ist eine Allegorie auf das Schaffen des Dichters.
178 Seiten, 9.80 Euro
Buchempfehlung
Romantik! Das ist auch – aber eben nicht nur – eine Epoche. Wenn wir heute etwas romantisch finden oder nennen, schwingt darin die Sehnsucht und die Leidenschaft der jungen Autoren, die seit dem Ausklang des 18. Jahrhundert ihre Gefühlswelt gegen die von der Aufklärung geforderte Vernunft verteidigt haben. So sind vor 200 Jahren wundervolle Erzählungen entstanden. Sie handeln von der Suche nach einer verlorengegangenen Welt des Wunderbaren, sind melancholisch oder mythisch oder märchenhaft, jedenfalls aber romantisch - damals wie heute. Nach den erfolgreichen beiden ersten Bänden hat Michael Holzinger sieben weitere Meistererzählungen der Romantik zu einen dritten Band zusammengefasst.
456 Seiten, 16.80 Euro