Logarithmus

[195] Logarithmus einer Zahl a zur Balis b ist die Zahl x, mit der b potenziert werden muß, um a zu erhalten; aus bx = a folgt x = log a/b oder kurz x = log a, wenn sich die Basis b von selbst versteht. Die Zahl a heißt Numerus von x.

Es gelten die Formeln


Logarithmus

was auch die Basis sein möge. Hieraus ergibt sich, daß die Logarithmen zur Vereinfachung von Rechenoperationen dienen: die Multiplikation wird mit ihrer Hilfe auf eine Addition zurückgeführt u.s.w. Man benutzt zu diesem Zweck Logarithmen, welche einem Logarithmensystem angehören, d.h. welche alle dieselbe Basis haben.

Am gebräuchlichsten sind die Briggschen Logarithmen mit der Basis 10, welch letztere als selbstverständlich nicht angegeben wird. Die Logarithmen der ganzen positiven und negativen Potenzen von 10 sind positive und negative ganze Zahlen, z.B. log 10 = 1; log 100 = 2; log 0,001 = – 3. Die Logarithmen der übrigen positiven Zahlen sind Brüche, welche positiv/negativ sind, je nachdem der Numerus Logarithmus 1 ist. Dieselben bestehen aus einer ganzen Zahl (Kennziffer) und einem stets positiv genommenen Dezimalbruch (Mantisse). Zahlen, welche sich nur in der Zahl der angehängten Nullen oder in der Stellung des Komma unterscheiden, haben gleiche Mantissen, z.B. log 3 = 0,47712; log 3000 = 3,47712; log 0,0003 = 0,47712 – 4. An Stelle der negativen Kennziffern pflegt man jedoch positive zu setzen und –10 hinzuzufügen; die letztere Zahl wird als selbstverständlich häufig weggelassen; z.B. log 0,0003 = 6,47712–10; log 0,3 = 9,47712–10 oder kurz 9,47712. Bei ganzen Zahlen und unechten Brüchen beträgt alsdann die Kennziffer des Logarithmus eine Einheit weniger, als Stellen vorhanden sind bezw. dem Komma vorangehen; bei echten Brüchen hat man von 9 die Zahl der Nullen abzuziehen, welche dem Komma folgen. Zur Berechnung der Logarithmen wandte man anfangs die mühsame Interpolation, später die leichtere Reihenentwicklung an. Die berechneten Logarithmen hat man in Tafeln (Logarithmentafeln) zusammengestellt. Von denselben sind die gebräuchlichsten die fünfstelligen, welche direkt die Logarithmen aller vierstelligen Zahlen (und aller mit 4 bedeutsamen Ziffern) geben. Die Logarithmen mehrstelliger Zahlen werden mit Hilfe der Proportionaltäfelchen berechnet, deren Einrichtung auf der Formel


Logarithmus

beruht; diese gilt näherungsweise, wenn b und c gegen a sehr klein sind.[195]

Beispiel a = 24340; b = 3; c = 10. log (a + c) = log 24350 = 4,38650; log a = 4,38632. Differenz (sogenannte Tafeldifferenz) 18. Nun geben die Proportionaltäfelchen 18 · b/c = 18 · 0,3 = 5,4; also log 24343 = log (a + b) = log a + 5,4 = 4,34637.

Die Tafeln dienen auch zur Aufsuchung des Numerus, wenn der Logarithmus gegeben ist, doch benutzt man hierfür auch Antilogarithmen (s.d.). Zur logarithmischen Rechnung müssen mathematische Ausdrücke möglichst in Produkte, Quotienten, Potenzen, Wurzeln verwandelt werden, wogegen Summen und Differenzen vermieden werden. Man schreibt daher


Logarithmus

u.s.w. Weil sich log (a ± b) nicht umformen läßt, vermeidet man bisweilen das fortwährende Zurückgehen auf den Numerus durch Anwendung von Additions- und Subtraktionslogarithmen (s d.).

Die Logarithmentafeln enthalten meistens auch die Logarithmen der trigonometrischen Funktionen, ferner Quadratzahlen, mathematische und physikalische Konstante u.a.

Natürliche (Napiersche, hyperbolische) Logarithmen heißen diejenigen mit der Basis e = c = 2,71828 ... (s. Exponentialfunktion). Sie werden kurz mit l bezeichnet. Es ist daher x = l a, wenn a = ex. Sie spielen in der Analysis und Funktionentheorie eine große Rolle; für technische Rechnungen werden sie nicht so häufig gebraucht.

Die Logarithmusfunktion wird durch Integration von 1/x erhalten: es ist


Logarithmus

Wegen l ∞ = + ∞; l 0 = – ∞ besitzt sie die beiden Unstetigkeitspunkte 0 und ∞, in welchen die ∞ Blätter der Riemannschen Fläche zusammenhängen (s. Funktionen). Es ist


Logarithmus

wo n eine beliebige positive oder negative Zahl. Der Logarithmus ist also unendlich vieldeutig. Speziell ist l i = π i/2; l (–1) = π i; l (–i) = 3π i/2 Die Logarithmen der negativen Zahlen sind also imaginär, zum Beispiel l (–e) = 1 + π i u.s.w. Die Formel l x + l y = l (x y) heißt Additionstheorem der Logarithmusfunktion.


Literatur: [1] Claussen, Die Logarithmen und ihre Anwendung, Leipzig 1879. – [2] Kleyer, Lehrbuch der Logarithmen, Stuttgart 1884. – [3] Meyer, M., Katechismus der Logarithmen, 2. Aufl., Leipzig 1898. – [4] Stadthagen, Ueber die Genauigkeit logarithmischer Berechnungen, Berlin 1888. – Logarithmentafeln sind: [5] Vega, Thesaurus logarithmorum, Leipzig 1794. – [6] Ders., Logarithmisch-trigonometrisches Handbuch (siebenstellig), 81. Aufl., Berlin 1906. – [7] Schrön, Siebenstellige gemeine Logarithmen, 25. Aufl., Braunschweig 1904. – [8] Bremiker, Logarithmisch-trigonometrische Tafeln mit sechs Dezimalstellen, 13. Aufl., Berlin 1900. – [9] Gauß, Fünfstellige, vollständige logarithmische u. trigonometrische Tafeln, 94. Aufl., Halle 1906. – [10] Rex, Fünfstellige Logarithmentafeln, Stuttgart 1884. – [11] Wittstein, Fünfstellige logarithmisch-trigonometrische Tafeln, 17. Aufl., Hannover 1896. – [12] Henrici, Vierstellige logarithmisch-trigonometrische Tafeln, Leipzig 1882.

Wölffing.

Quelle:
Lueger, Otto: Lexikon der gesamten Technik und ihrer Hilfswissenschaften, Bd. 6 Stuttgart, Leipzig 1908., S. 195-196.
Lizenz:
Faksimiles:
195 | 196
Kategorien:
Ähnliche Einträge in anderen Lexika

Buchempfehlung

Lohenstein, Daniel Casper von

Cleopatra. Trauerspiel

Cleopatra. Trauerspiel

Nach Caesars Ermordung macht Cleopatra Marcus Antonius zur ihrem Geliebten um ihre Macht im Ptolemäerreichs zu erhalten. Als der jedoch die Seeschlacht bei Actium verliert und die römischen Truppen des Octavius unaufhaltsam vordrängen verleitet sie Antonius zum Selbstmord.

212 Seiten, 10.80 Euro

Im Buch blättern
Ansehen bei Amazon

Buchempfehlung

Geschichten aus dem Sturm und Drang II. Sechs weitere Erzählungen

Geschichten aus dem Sturm und Drang II. Sechs weitere Erzählungen

Zwischen 1765 und 1785 geht ein Ruck durch die deutsche Literatur. Sehr junge Autoren lehnen sich auf gegen den belehrenden Charakter der - die damalige Geisteskultur beherrschenden - Aufklärung. Mit Fantasie und Gemütskraft stürmen und drängen sie gegen die Moralvorstellungen des Feudalsystems, setzen Gefühl vor Verstand und fordern die Selbstständigkeit des Originalgenies. Für den zweiten Band hat Michael Holzinger sechs weitere bewegende Erzählungen des Sturm und Drang ausgewählt.

424 Seiten, 19.80 Euro

Ansehen bei Amazon