[204] Ebene heißt das Erzeugnis einer Geraden, die immer durch einen Punkt geht und dabei eine Gerade schneidet. Sie teilt den Raum in zwei symmetrische Halbräume, ist unbegrenzt, in sich verschiebbar und umkehrbar; jede Gerade durch zwei Punkte derselben fällt ganz in sie hinein.
Die Gleichung der Ebene ist vom ersten Grad E = A x + By + C z + D = 0. Mit D = 0 geht die Ebene durch den Ursprung, mit A = 0, B = 0, C = 0 ist sie resp. parallel zur x-, y-, z-Achse. Mit
geht sie resp. durch die x-, y-, z-Achse; mit
steht sie resp. senkrecht zur x-, y-, z-Achse. Eine Ebene ist bestimmt durch drei Punkte a, b, c; a', b', c'; a'', b'', c''; ihre Gleichung ist:
oder in Parameterdarstellung:
Die Achsenabschnitte der Ebene E = 0 sind D/A, D/C, D/C; ihre Koordinaten A/D, B/D, C/D oder homogen A : B : C : D. Der Winkel ψ der beiden Ebenen E = A x + B y + C z + D = 0 und E' = A' x + B' y + C' z + D' = 0 ist gegeben durch:
wobei
Die Ebenen sind parallel, wenn A : B : C = A' : B' : C'; sie sind aufeinander senkrecht, wenn AA' + BB' + CC' = 0. Hessesche Normalform der Ebenengleichung ist: x cos α + y cos β + z cos γ = d, wo cos2 α + cos2 ß + cos2 γ = 1. Dabei ist d = D/W die Entfernung der Ebene vom Ursprung (das Vorzeichen von W wird so bestimmt, daß d positiv wird); cos α = A/W, cos ß = B/W, cos γ = C/W sind die drei Richtungskosinusse der Ebene, d.h. die Kosinusse ihrer Winkel mit der y z-, z x- und x y-Ebene. Abstand des Punktes a, b, c von der Ebene E = 0 ist: Aa + Bb + Cc + D/W positiv/negativ, je nachdem der Punkt mit dem Ursprung auf derselben/verschiedener Seite der Ebene liegt. Abstand zweier parallelen Ebenen Ax + By + Cz + D = 0 und Ax + By + Cz + D' = 0 ist D D'/W. Medianebenenpaar von E = 0 und E' = 0 ist E/W ± E'/W' = 0. Zwei Ebenen E = 0 und E' = 0 bestimmen eine Gerade
ist irgend eine Ebene durch dieselbe. Ist aber λ ein veränderlicher Parameter, so ist E + λE' = 0 der Inbegriff aller Ebenen durch die Gerade, also ein [204] Ebenenbüschel mit der Geraden als Achse. Zwei projektivische Ebenenbüschel
erzeugen eine Regelfläche zweiter Ordnung
welche in eine Kegelfläche übergeht, wenn die Achsen der Büschel sich schneiden. Drei projektivische Ebenenbüschel
erzeugen eine Raumkurve dritter Ordnung. Drei Ebenen E = 0, E' = 0, E'' = 0 schneiden sich in einem Punkt; E + λE' + μE? = 0 stellt eine beliebige Ebene durch den Punkt, oder aber, wenn λ und μ veränderliche Parameter sind, den Inbegriff aller Ebenen durch den Punkt, also ein Ebenenbündel dar. Kann man jedoch λ und μ so bestimmen, daß E + λE' + μE'' = 0 unabhängig von x, y, z, so gehen E = 0, E' = 0, E'' = 0 durch eine Gerade hindurch. Drei kollineare Ebenenbündel
erzeugen eine Fläche dritter Ordnung
Vier Ebenen E = 0, E' = 0, E'' = 0, E''' = 0 schneiden sich in einem Punkt, wenn
Andernfalls kann man die Gleichung jeder beliebigen Ebene auf die Form E + λE' + μE'' + νE''' bringen.
Literatur: [1] Salmon, G., Analytische Geometrie des Raumes, deutsch von Fiedler, 3. Aufl. Leipzig 1879, Bd. 1, Kap. 3.
Wölffing.
Brockhaus-1911: Schiefe Ebene · Ebene
Herder-1854: Schiefe Ebene · Ebene
Lueger-1904: Schiefe Ebene · Rektifizierende Ebene
Meyers-1905: Nabwondreb-Ebene · Oskulierende Ebene · Schiefe Ebene · Ebene [1] · Ebene [2] · Ebene, schiefe
Pierer-1857: Nisäische Ebene · Thebanische Ebene · Kulikower Ebene · Ebene · Ebene....
Buchempfehlung
Die 1897 entstandene Komödie ließ Arthur Schnitzler 1900 in einer auf 200 Exemplare begrenzten Privatauflage drucken, das öffentliche Erscheinen hielt er für vorläufig ausgeschlossen. Und in der Tat verursachte die Uraufführung, die 1920 auf Drängen von Max Reinhardt im Berliner Kleinen Schauspielhaus stattfand, den größten Theaterskandal des 20. Jahrhunderts. Es kam zu öffentlichen Krawallen und zum Prozess gegen die Schauspieler. Schnitzler untersagte weitere Aufführungen und erst nach dem Tode seines Sohnes und Erben Heinrich kam das Stück 1982 wieder auf die Bühne. Der Reigen besteht aus zehn aneinander gereihten Dialogen zwischen einer Frau und einem Mann, die jeweils mit ihrer sexuellen Vereinigung schließen. Für den nächsten Dialog wird ein Partner ausgetauscht indem die verbleibende Figur der neuen die Hand reicht. So entsteht ein Reigen durch die gesamte Gesellschaft, der sich schließt als die letzte Figur mit der ersten in Kontakt tritt.
62 Seiten, 3.80 Euro
Buchempfehlung
Romantik! Das ist auch – aber eben nicht nur – eine Epoche. Wenn wir heute etwas romantisch finden oder nennen, schwingt darin die Sehnsucht und die Leidenschaft der jungen Autoren, die seit dem Ausklang des 18. Jahrhundert ihre Gefühlswelt gegen die von der Aufklärung geforderte Vernunft verteidigt haben. So sind vor 200 Jahren wundervolle Erzählungen entstanden. Sie handeln von der Suche nach einer verlorengegangenen Welt des Wunderbaren, sind melancholisch oder mythisch oder märchenhaft, jedenfalls aber romantisch - damals wie heute. Michael Holzinger hat für den zweiten Band eine weitere Sammlung von zehn romantischen Meistererzählungen zusammengestellt.
428 Seiten, 16.80 Euro