Fadenkurven

[566] Fadenkurven sind die Gleichgewichtsformen, die ein vollkommen biegsamer Faden unter Einwirkung kontinuierlich über ihn verteilter Kräfte annimmt. Schneidet man den Faden an irgend einem Punkte durch, so zerfällt das Gleichgewicht; um es zu erhalten, sind zwei entgegengesetzte gleiche Kräfte T längs der Tangente des Punktes einzuführen, die eine an dem einen, die andre an dem andern der beiden Fadenstücke angreifend, in welche der Faden zerfallen würde. Diese Kräfte heißen die Spannung des Fadens in jenem Punkte. Wir wollen die Gleichgewichtsbedingungen des Fadens für den Fall aufstellen, daß derselbe nicht dehnbar ist.

Es sei M M' ein unendlich kleines Bogenelement ds des Fadens, verschwindend im Punkte M (x, y, z). Trennen wir dasselbe ab, so sind in M und M' die beiden Spannungen längs den Tangenten in diesen Punkten anzubringen. Bezeichnet T die Spannung in M im Sinne des wachsenden Bogens, so ist T + dT die Spannung im folgenden Punkte M'; erstere ist in M, aber im entgegengesetzten Sinne als – T anzubringen. Bezeichnen wir einstweilen mit f die an dem verschwindenden Elemente ds wirkende Kraft, so besteht Gleichgewicht zwischen den drei KräftenT, f, T + dT (Fig. 1). Beziehen wir alles auf ein rechtwinkliges Koordinatensystem und bezeichnen wir die Komponenten von T mit Tx, Ty, Tz, so werden Tx + d Tx, Ty + d Ty, Tz + d Tz die von T + dT und – Tx, – Ty,Tz die von – T sein. Sind fx, fy, fz ebenso die Komponenten von f, so bestehen an dem Punkte M, in dem das Fadenelement verschwindet, die drei Gleichgewichtsbedingungen: d Tx + fx = 0, d Ty + fy = 0, d Tz + fz = 0. Die Komponenten der Kraft f bildet man folgendermaßen: Denkt man sich eine Fadenlänge gleich der Einheit in allen Elementen von denselben Kräften beeinflußt wie das Bogenelement ds und bezeichnet die Resultante aller dieser Kräfte mit P, so hat man f : P = ds : 1, d.h. f = Pds, und hat P dieselbe Richtung wie f. Man nennt P die auf die Längeneinheit reduzierte Kraft. Bildet P mit den Koordinatenachsen die Winkel α, ß, γ, so werden fx = P cosa · ds = Xds, fy = Pcosß ·ds = Yds, fz = Pcosγ · ds = Zds, wenn X, Y, Z die Komponenten von P bedeuten. Da die Spannung T die Richtung der Tangente hat, deren Richtungscosinusse dx : ds, dy : ds, dz : ds sind, so werden Tx = T dx/ds, Ty = T dy/ds, Tz = T dz/ds und mithin die Gleichgewichtsbedingungen:


Fadenkurven

[566] Es sind Differentialgleichungen zweiter Ordnung; sie liefern durch Integration die Gleichungen der Fadenkurve und die Spannung. Ohne die Fadenkurve zu kennen, kann man in dem Falle, daß eine Kräftefunktion U für das Problem existiert, nämlich X = ∂U/∂x, Y = ∂U/∂y, Z = ∂U/∂z die partiellen Abteilungen einer solchen sind, die Spannung finden. Es ist nämlich, wie sich durch Multiplikation der Gleichgewichtsbedingungen mit dx/ds, dy/ds, dz/ds und deren Addition ergibt: – dT = X dx + Y dy + Zdz und folglich T – T = – (U – U0), wo T0, U0 ein Paar zusammengehöriger Werte der Spannung und der Kräftefunktion in einem Punkte x0, y0, z0 sind. Ist z. B. die Kraft P normal zur Fadenkurve, so ist X/P dx/ds + Y/P dy/ds + Z/P dz/ds = 0, also auch X dx + Y dy + Z dz = 0, d.h. d T = 0 und mithin T = konst. Dieser Fall tritt insbesondere ein, wenn der Faden auf einer glatten Fläche aufliegt, in welchem Falle der Normalwiderstand dieser die Kraft Pds ist. Ein über eine glatte Fläche hingespannter Faden nimmt die Form einer geodätischen Linie der Fläche an. Die Schmiegungsebene der Fadenkurve enthält stets die Flächennormale.

Besondere Wichtigkeit haben die Fadenkurven für Parallelkräfte Pds. Man erkennt unmittelbar, daß in diesem Falle die Kurve eine ebene sein muß, und wenn man die Richtung der Kräfte zur Richtung der y-Achse, die zu dieser senkrechte Richtung zur Richtung der x-Achse und die Ebene der Kurve zur xy-Ebene wählt, so werden die Gleichgewichtsbedingungen wegen X = 0, Z = 0, z = 0:

d (T dx/ds) = 0, d (T dy/ds) + Y ds = 0.

Durch Integration der ersten Gleichung folgt T dx/ds = T0. Wird T hieraus in die zweite Gleichung eingesetzt, so erhält man die Differentialgleichung der Fadenkurve: T0 d2y/dx2 + Y ds/dx = 0.

Für einen homogenen schweren Faden ist Y ds = – δgds das Gewicht des Bogenelementes ds, wenn δ die spezifische Masse des Fadens (Masse der Längeneinheit) ist. Die Gleichgewichtsform des Fadens heißt die Kettenlinie (Fig. 2). Für sie ist, wenn man den Anfangspunkt des Bogens s in den tiefsten Punkt der Kurve verlegt, in dem die Tangente horizontal und folglich T1 = 0 ist: T dx/ds = T0, T0 dy/dx – δgs = 0, woraus dy/dx = s/α folgt, indem man die konstante Horizontalspannung T0 = δga setzt. T0 wird dadurch als das Gewicht einer Fadenlänge α dargestellt, welche Konstante der Parameter der Kettenlinie heißt. Bezeichnet v den Winkel der Tangente mit der Vertikalen, so nimmt die Differentialgleichung der Fadenkurve die Form an: s = a cotg φ. Differenziert man sie und berücksichtigt, daß dx = ds sin φ, dy = ds cos φ, dy/dx = cotg φ ist, so ergeben sich leicht die Koordinaten x, y als Funktionen von φ. Es wird nämlich, wenn die γ-Achse durch den tiefsten Punkt (Scheitel) und der Koordinatenursprung um die Strecke a vertikal unter den Scheitel gelegt wird,


Fadenkurven

Hiermit findet man leicht


Fadenkurven

als Gleichungen der Kurve, welche y und s als Funktionen von x liefern. Für die Spannung T hat man T = T0 ds/dx = T0 : sin φ oder, da T0 = δgα und y = α : sin φ ist, T = δgy, d.h. die Spannung ist der Ordinate y proportional und gleich dem Gewichte eines Fadens von der spezifischen Masse der Kettenlinie und der Länge gleich der Ordinate y.


Literatur: Schell, Theorie der Bewegung und der Kräfte, Leipzig 1879, Bd. 2, S. 83 und 88–107.

(Schell) Finsterwalder.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 2.
Quelle:
Lueger, Otto: Lexikon der gesamten Technik und ihrer Hilfswissenschaften, Bd. 3 Stuttgart, Leipzig 1906., S. 566-567.
Lizenz:
Faksimiles:
566 | 567
Kategorien:

Buchempfehlung

Wieland, Christoph Martin

Musarion. Ein Gedicht in drei Buechern

Musarion. Ein Gedicht in drei Buechern

Nachdem Musarion sich mit ihrem Freund Phanias gestrittet hat, flüchtet sich dieser in sinnenfeindliche Meditation und hängt zwei radikalen philosophischen Lehrern an. Musarion provoziert eine Diskussion zwischen den Philosophen, die in einer Prügelei mündet und Phanias erkennen lässt, dass die beiden »nicht ganz so weise als ihr System sind.«

52 Seiten, 4.80 Euro

Im Buch blättern
Ansehen bei Amazon

Buchempfehlung

Geschichten aus dem Sturm und Drang II. Sechs weitere Erzählungen

Geschichten aus dem Sturm und Drang II. Sechs weitere Erzählungen

Zwischen 1765 und 1785 geht ein Ruck durch die deutsche Literatur. Sehr junge Autoren lehnen sich auf gegen den belehrenden Charakter der - die damalige Geisteskultur beherrschenden - Aufklärung. Mit Fantasie und Gemütskraft stürmen und drängen sie gegen die Moralvorstellungen des Feudalsystems, setzen Gefühl vor Verstand und fordern die Selbstständigkeit des Originalgenies. Für den zweiten Band hat Michael Holzinger sechs weitere bewegende Erzählungen des Sturm und Drang ausgewählt.

424 Seiten, 19.80 Euro

Ansehen bei Amazon