[335] Mathematische Zeichen, in der Mathematik übliche Abkürzungen.
Die gebräuchlichsten sind: = gleich; ≡ identisch gleich, kongruent (in der Zahlentheorie); > größer als; < kleiner als; oder =|= nicht gleich; ~ ähnlich; ≅ kongruent (in der Geometrie); + plus (Additionszeichen); minus (Subtraktionszeichen); · oder × mal (Multiplikationszeichen); : durch (Divisionszeichen) oder: verhält sich zu (in Proportionen); √ Wurzelzeichen; ∞ unendlich; ! Fakultät (n! = Produkt der n ersten Zahlen); () Zeichen der Binomialkoeffizienten, z.B.
< oder ∢ oder ∧ Winkel; ∩ Bogen; Δ Dreieck; ∥ parallel; ⊥ senkrecht; gleich und parallel; | | absoluter Betrag (z.B. |a| = a); ± plus oder minus; ∫ Integralzeichen. Hierzu kommen noch die Klammern (); []; {}. Wenn auch die Wahl der Buchstaben in mathematischen Ausdrücken willkürlich ist, so ist es doch üblich, für gewisse Größen bestimmte Buchstaben zu wählen. Die häufigsten dieser stehenden Bezeichnungen sind:
a, b, c ... Koeffizienten; c Konstante; d Zeichen der Differentiation, Differenz in arithmetischen Reihen, Zahl der Doppelpunkte einer Kurve; ∂ Zeichen der partiellen Differentiation; e Basis des natürlichen Logarithmensystems, Exzentrizität (bei Kegelschnitten), Einheit (in der Zahlentheorie), endliche Zahl; f Reibungskoeffizient, Funktion; g Beschleunigung durch die Schwere; h Höhe; i Quadratwurzel aus der negativen Einheit (Zeichen der imaginären Zahlen); j imaginäre dritte Einheitswurzel; k Klasse der Kurven, Modul der elliptischen Integrale; l Zeichen des natürlichen Logarithmus; m Mittellinie, Masse; n unbestimmte Zahl; o Ordnung einer Kurve; p Geschlecht einer Kurve, p-Funktion (s. Sigmafunktionen), ∂z/∂x, Parameter der Kegelschnitte, Beschleunigung; p, q, r Linienkoordinaten im Raum; q Zinsfaktor, Rang, ∂z/∂y; Querschnitt; r Rente, Radius, ∂2z/∂x2, Substitution, Zahl der Rückkehrpunkte einer Kurve, Torsionsradius; s Summe, Kurvenbogen, ∂2z/∂x∂y, Potenzsummen der Wurzeln einer Gleichung; t Zeit, Schwerlinie, ∂2z/∂y2, Zahl der Doppeltangenten einer Kurve; u Glieder von Reihen; u, v, w Linienkoordinaten in der Ebene; v Geschwindigkeit; w Wahrscheinlichkeit, Zahl der Wendepunkte: x, y, z Unbekannte, Veränderliche, Punktkoordinaten; z komplexe Veränderliche.
α, β, γ bekannte Winkel, Koeffizienten; δ beliebig kleine Größe, Zeichen der Variation, Zeichen des Aronholdschen Prozesses, ε ± 1, beliebig kleine Größe, beliebig kleiner Parameter; ζ Zetafunktion (s. Sigmafunktionen), Veränderliche; η Veränderliche; ϑ Winkel, Thetafunktion, echter Bruch, χ Modul der elliptischen Integrale, Linienkoordinate im Raum; λ Parameter; ξ Veränderliche; π Verhältnis des Kreisumfangs zum Durchmesser, Linienkoordinate im Raum; ρ Radius, Proportionalitätsfaktor, Krümmungsradius, Linienkoordinate im Raum; σ Sigmafunktion; φ Winkel, adjungierte Kurven, zahlentheoretische Funktion; ψ, χ Winkel; ω Periode, homogenisierende Veränderliche, Winkelgeschwindigkeit, Wälzungswinkel bei Rouletten; ώ unendlich wachsende Zahl.
B Bernoullische Zahlen; C Konstante, Eulersche Konstante (0,57721566 ...); D Determinante, Diskriminante; E vollständiges elliptisches Integral II. Gattung, Eulersche Zahlen; F Brennpunkt, Fläche, hypergeometrische Reihe, elliptisches Integral I. Gattung; G Gruppe; J Zylinderfunktion; K vollständiges elliptisches Integral I. Gattung, Kreis, Kraft, Kegelschnitt; L gerade Linie; M Modul; O Ursprung, Oberfläche; P Punkt, Kugelfunktion; Q Gewicht; R Restglied bei Reihen, Resultante; S Substitution; T Tangente, lebendige Kraft; U Arbeit; V Potential, Volumen; X infinitesimale Transformation.[335]
Β Betafunktion; Γ Gammafunktion; Δ Deltaamplitude, Transformationsdeterminante, Größe, die gegen Null konvergiert; Π Produkt, elliptisches Integral III. Gattung; Σ Summenzeichen; Ω Omegaprozeß; P Potenzreihe.
Auch einige Buchstabenverbindungen dienen als Abkürzungen: z.B. sin, cos, tg, cotg, sec, cosec für die goniometrischen und arc sin u.s.w. für die cyclometrischen Funktionen; log oder lg Logarithmus. Weitergehende Abkürzungen finden sich in den mathematischen Zeichensprachen (s. Literatur).
Literatur (für Zeichensprachen): [1] Schröder, Vorlesungen über die Algebra der Logik, I-III, Leipzig 189095. [2] Peano, Notations de logique mathématique, Turin 1894. [3] Frege, Begriffsschrift, Halle 1879.
Wölffing.
Adelung-1793: Zeichen, das · Affect-Zeichen, das
Brockhaus-1911: Mathematische Zeichen · Mathematische Geographie · Meteorologische Zeichen · Zeichen · Niedersteigende Zeichen · Astronomische Zeichen · Aufsteigende Zeichen · Chemische Zeichen
Eisler-1904: Mathematische Psychologie · Mathematische Logik · Mathematische Gewißheit · Zeichen · Zeichen
Herder-1854: Diakritische Zeichen · Musikalische Zeichen · Zeichen · Arithmetische Zeichen · Astronomische Zeichen · Chemische Zeichen
Lueger-1904: Mathematische Tafeln · Mathematische Konstanten · Mathematische Geographie
Mauthner-1923: Mathematische Naturerklärung
Meyers-1905: Mathematische Zeichen · Mathematische Hoffnung · Mathematische Geographie · Hoffnung, mathematische · Niedersteigende Zeichen · Meteorologische Zeichen · Pythagorēisches Zeichen · Konventionelle Zeichen · Astronomische Zeichen · Arithmetische Zeichen · Absteigende Zeichen · Diakritische Zeichen · Chemische Zeichen · Aufsteigende Zeichen
Pierer-1857: Mathematische Geographie · Männliche Zeichen · Lasterhafte Zeichen · Historische Zeichen · Kalte Zeichen · Mittlere Zeichen · Musikalische Zeichen · Menschliche Zeichen · Medicinische Zeichen · Melancholische Zeichen · Fette Zeichen · Feuchte Zeichen · Chemische Zeichen · Astronomische Zeichen · Beredte Zeichen · Gemeine Zeichen · Herrschende Zeichen · Fruchtbare Zeichen · Feurige Zeichen · Fleischige Zeichen
Buchempfehlung
Die zentralen Themen des zwischen 1842 und 1861 entstandenen Erzählzyklus sind auf anschauliche Konstellationen zugespitze Konflikte in der idyllischen Harmonie des einfachen Landlebens. Auerbachs Dorfgeschichten sind schon bei Erscheinen ein großer Erfolg und finden zahlreiche Nachahmungen.
640 Seiten, 29.80 Euro