[116] Druckelastizität wird die Elastizität (s.d.) gegen Beanspruchungen auf Druck (s.d.) genannt. Bei Versuchen in dieser Hinsicht pflegen prismatische Körper (Stäbe, Würfel) wachsenden Drücken parallel ihrer Achse und möglichst gleichmäßig verteilt auf die Endquerschnitte ausgesetzt zu werden. Ein seitliches Ausbiegen muß ausgeschlossen sein. Bezeichnen l die ursprüngliche Achslänge, F den ursprünglichen Querschnitt, d λ = d l/l die spezifische elastische Verkürzung (Verkürzung pro Längeneinheit der Stablänge l) durch ein Anwachsen des spezifischen Drucks σ = P/F (Druck pro Flächeneinheit des Querschnitts F) um d σ, dann heißt in
E der Druckelastizitätsmodul (vgl. Elastizitätsmodul, Zugelastizität und [5], S. 119). Derselbe bedeutet also das Verhältnis der Zunahme d σ des spezifischen Drucks zur entsprechenden spezifischen Verkürzung d λ, während 1/E das Verhältnis der spezifischen Verkürzung d λ (negativen Dehnung) zur Zunahme d σ des spezifischen Drucks (negative Spannung) oder auch die Verkürzung pro Längeneinheit durch die Gewichtseinheit Druckzunahme bezeichnet. Mit der Abnahme der Länge sind Zunahmen der Querdimensionen des Probekörpers verbunden. Bezüglich des Verhältnisses jener Abnahme pro Längeneinheit zu diesen Zunahmen pro Breiteneinheit s. Elastizitätsmodul und Elastizitätsquotient. Für manche Materialien, insbesondere für Schweißeisen, Flußeisen und Stahl, ist E innerhalb der gebräuchlichen Beanspruchungen nahezu konstant, womit nach 1.:
unter ∆l die ganze Längenänderung von l durch den spezifischen Druck σ verstanden. Die Grenze σ = p, bis zu der die hierdurch ausgedrückte Proportionalität zwischen σ und λ, ∆l, oder auch zwischen P und λ, ∆l, besteht, wird Proportionalitätsgrenze für Druck genannt, mitunter auch Elastizitätsgrenze (s.d.) für Druck, wenn nämlich unterhalb dieser Grenze nur elastische Verkürzungen in Betracht gezogen werden, während oberhalb derselben auch erhebliche bleibende Verkürzungen vorkommen.
Gleichung 2. gilt nur für ruhende Belastung. Käme P für den ganzen Versuchskörper plötzlich mit vollem Werte zur Wirkung, so würde unter ihren Voraussetzungen bei bestimmtem E zunächst eine Verkürzung bis 2 λ eintreten, und erst nach Schwingungen, mit Eintritt des Gleichgewichtes, die Verkürzung λ erreicht werden [6], A 38, 109. Die Werte von E, p für Druck weichen bei Schweißeisen, Flußeisen und oft auch bei Stahl nicht bedeutend von denen für Zug ab. Wir[116] führen beispielsweise die Ergebnisse der Druckversuche Bauschingers [2] mit dem bereits im Art. Biegungselastizität erwähnten Ternitzer Bessemerstahl an. Sie wurden teils mit quadratischen Stäben von 3/3/9 cm, teils mit Körpern der in beistehender Figur ersichtlichen Abmessungen angestellt, letzterenfalls unter Beziehung der Beanspruchungen auf den kleineren Querschnitt. Die eingesetzten Elastizitätsgrenzen sind etwas höher als die Proportionalitätsgrenze.
Das Verhalten von Schweißeisen, Flußeisen und Stahl oberhalb der Proportionalitätsgrenze ist für Druck weit weniger als für Zug untersucht. Bei den Bauschingerschen Prismen von 3/3/9 cm aus Ternitzer Bessemerstahl zwischen den Druckplatten der Werderschen Festigkeitsmaschine wurde mit wachsender Belastung eine S-förmige Ausbiegung beobachtet, die mehr und mehr zunahm, bis das Prisma plötzlich heraussprang. Bei den in der vorstehenden Figur angedeuteten Versuchskörpern wurde eine Pressung erreicht, unter der sich das innere Prisma auch ohne weitere Erhöhung der Belastung immer mehr verkürzte (bis auf weniger als die halbe Anfangslänge), während die Querdimensionen wuchsen. Die Beanspruchungen pro Quadratzentimeter enthält Tab. I als »Maximaldruck«. Alle Resultate sind absolut und im Verhältnis zu den entsprechenden Zahlen für Zug gegeben. Nach genaueren Untersuchungen [7] wird bei Schweißeisen, Flußeisen und weicheren Stahlsorten im allgemeinen mit wachsendem Druck eine Beanspruchung σ = s erreicht, die der Streckgrenze für Zug entspricht (s. Dehnung, Zugelastizität), indem alsdann im Vergleiche zu den Aenderungen von a verhältnismäßig große bleibende Verkürzungen eintreten, weshalb s von Bauschinger Quetschgrenze, von Tetmajer Stauchgrenze genannt wurde. Mit dieser Zustandsänderung ist jedoch nach Versuchen mit Schweißeisen und Flußeisen die Kohäsion des Materials ebensowenig überwunden, wie bei Zugversuchen mit Erreichen der Streckgrenze. Wie bei letzteren die Ueberwindung der Kohäsion durch eine ausgeprägte Einschnürung an der Bruchstelle erkenntlich wird und die Zugfestigkeit z dem Beginne dieser Kontraktion entspricht (s. Dehnung), so fand Tetmajer auch die Ueberwindung der Kohäsion bei Druckversuchen, den Beginn erheblicher seitlicher Ausbauchungen, genügend feststellbar und faßte diese Kohäsionsgrenze als Druckfestigkeit d auf [8], [14], S. 176 (vgl. Druckfestigkeit). Bezeichnen Ez, pz, sz, z den Elastizitätsmodul, die Proportionalitätsgrenze, Streckgrenze und Festigkeit für Zug, so gibt Tetmajer als Mittelwerte der Resultate von Druck-, proben beispielsweise [8], S. 81:
für Schweißeisen von de Wendel, Hayingen, E = 1,00 Ez, p = 1,05 pz, s = 1,01 sz, d = 1,00 z;
für Flußeisen von de Wendel, Hayingen, E = 1,01 Ez, p = 1,18 pz, s = 0,95 sz, d = 0,98 z;
ferner für Schweißeisen von Burbach s = 0,86 sz, d = 0,91 z, für Flußeisen (Kesselblech) von St. Etienne s = 1,00 sz, d = 1,00 z und für Kupfer (Stehbolzenmaterial) s = 1,26 sz, d = 0,98 z. Wie auf die Festigkeitseigenschaften überhaupt, so können verschiedene Form, Beimengungen, Temperaturen, mechanische Behandlung u.s.w. auch Einfluß auf die Verhältnisse der Druckelastizität und Druckfestigkeit ausüben, was in bezug auf den Kohlenstoff schon Tab. I erkennen läßt; doch zeigt sich der Elastizitätsmodul am wenigsten empfindlich.
Für Gußeisen, Steine, Beton, Holz u.s.w. ist der Elastizitätsmodul veränderlich, indessen erscheint diese Veränderlichkeit für Gußeisen und Druck mitunter gering. Bei veränderlichem Elastizitätsmodul ergibt 1., wenn anstatt E ein Mittelwert E' gesetzt wird, der von σ = 0 bis σ = σ die gleiche Längenänderung λ wie das variable E bedingt, ganz entsprechend 2.:
So sind aus den in Tab. II angeführten mittleren Versuchsresultaten von Hodgkinson [1] für Gußeisen nach 3. die Werte von E' in der fünften Kolumne berechnet, während sich die[117] Werte der letzten Kolumne aus derselben Gleichung ergeben, wenn die vollständigen Verkürzungen anstatt der elastischen verwendet werden. Der Mittelwert sämtlicher E' ist 964000 kg pro Quadratzentimeter, jedoch für alle gebräuchlichen Beanspruchungen (bis etwa 1000 kg) 955000 kg.
Andre Versuche mit Gußeisen s. z.B. [13], S. 13. Es zeigt sich, daß der Elastizitätsmodul im allgemeinen mit der Belastung abnimmt, daß er aber weit mehr von der Beschaffenheit des Materials abhängt als bei schmiedbarem Eisen und Stahl.
Anstatt von 0 bis σ kann man auch für andre Intervalle, von Anfangswerken σa, λa bis zu Endwerten σe, λe der Größen σ, λ (konstante) Mittelwerte von E einführen, womit aus 1. folgen:
Hiernach sind z.B. die E der vorletzten Kolumne von Tab. III berechnet, während diejenigen der drittletzten Kolumne wieder aus 3. erhalten wurden. Tab. III gibt die wesentlichen Versuchsresultate von Bach [9] mit zylindrischen Betonkörpern aus Blaubeurener bezw. Laufener Portlandzement und Neckarsand, Muschelkalksteinschotter, Neckarkies oder Kiessand (Sand und Kies von der Lagerung oberhalb Gemmrigheim), Durchmesser 25,3525,4 cm, Höhe 100,4101,6 cm, Alter 7691 Tage. Mittels der Rammaschine hergestellte Normalzugskörper der Zusammensetzung 1 kg Zement, 3 kg Normalsand, 0,4 kg Wasser hatten nach 28 Tagen (1 in der Luft, 27 unter Wasser) für den Blaubeurener Zement 25,5 kg, für den Laufener Zement 21,2 kg Zugfestigkeit ergeben. Jede Belastung und volle Entlastung der Betonkörper wurde so oft wiederholt, bis keine Aenderungen der elastischen und bleibenden Zusammendrückungen mehr eintraten.
Während bei konstantem Elastizitätsmodul E = 1/ε zwischen den Dehnungen λ und Spannungen σ Proportionalität besteht (Hookesches Gesetz):
hat man auch in andern Fällen die Beziehung zwischen λ und a durch eine möglichst einfache Gleichung auszudrücken gesucht (vgl. Elastizitätsgesetz). In neuerer Zeit ist besonders häufig das »Potenzgesetz«
verwendet worden, worin m, n Konstante, so daß zufolge 1. der Elastizitätsmodul E und zufolge 3. der mittlere Elastizitätsmodul E' von σ = 0 bis σ:
Für m = 1 geht 6. in 5. über.
So erhielt Bach ([13], S. 13, 37) für einen Zylinder aus zähem grauen Gußeisen von 62,15 cm Länge, abgedreht auf 8 cm Durchmesser, Meßlänge 50 cm, der vorher nicht belastet war, bei Beanspruchungen auf Druck bis σ = 597 kg pro Quadratzentimeter:
womit wegen m = 1,0685, n = 1/1320000 nach 7.:
E' = 1235000/σ0,0685, E = 1320000/σ0,0685;
ferner für ein Prisma aus gleichem Material von 54,5 cm Länge, bearbeitet auf 6,99/7 cm Querschnitt, Meßlänge 50 cm, das für Zug bis σ = 409 kg pro Quadratzentimeter ergeben hatte:
λ = σ1,083/1338000, bei Beanspruchungen auf Druck bis σ = 512 kg/qcm: λ = σ1,035/1043000,
und, nachdem es alsdann 15 Minuten mit 1841 kg pro Quadratzentimeter belastet war, bei Beanspruchungen auf Druck bis σ = 1842 kg/qcm:
λ = σ1,0521217000.
[118] Für Beton fand Bach ([13], S. 65) innerhalb der für die Praxis in Betracht kommenden Spannungsgrenzen je nach der Zusammensetzung folgende Ausdrücke:
S. a. Druckfestigkeit, Druckversuch, Elastizität, Elastizitätsgesetz, Elastizitätsmodul, Elastizitätsquotient, Kompressionskoeffizient, Elastische Nachwirkung, Knickfestigkeit, Druck, exzentrischer, Körper von gleichem Widerstande.[119]
Literatur: [1] Morin, Résistance des matériaux, Paris 1853, S. 61. [2] Bauschinger, Versuche über die Festigkeit des Bessemerstahls von verschiedenem Kohlenstoffgehalt, Mitteil. aus dem mechan.-techn. Laboratorium zu München, Heft III, 1874, S. 6. [3] Mitteil. aus dem mechan.-techn. Laboratorium zu München, Heft V, 1875 (Bausteine); Heft X, 1884 (Bausteine Bayerns); Heft XVI, 1886 (Nadelhölzer); Heft XVIII, 1889 (Steine); Heft XXVI, 1898 (Hartsteine); Heft XXVIII, 1902 (Gußeisen); Heft XXIX, 1904 (Holz quer zur Faser, Beton). [4] Grashof, Theorie der Elastizität und Fertigkeit, Berlin 1878, S. 42. [5] Weyrauch, Theorie elastischer Körper, Leipzig 1884, S. 119, 210. [6] Ders., Aufgaben zur Theorie elastischer Körper, Leipzig 1885, S. 75, 277. [7] Bauschinger, Ueber die Veränderung der Elastizitätsgrenze und der Fertigkeit des Eisens durch Strecken und Quetschen, durch Erwärmen und Abkühlen und durch oftmals wiederholte Beanspruchung, Mitteil. aus dem mechan.-techn. Laboratorium zu München, Heft XIII, 1886, S. 13. [8] Tetmajer, Methoden und Resultate der Prüfung der Festigkeitsverhältnisse des Eisens und andrer Metalle, Mitteil. der Anstalt zur Prüfung von Baumaterialien in Zürich, Heft IV, 1890, S. 50. [9] Bach, Versuche über die Elastizität von Beton, Zeitschr. des Vereines deutscher Ingenieure 1895, S. 489 (Zement, Zementmörtel und Beton, 1896, S. 1381). [10] Bach, Untersuchungen von Granit in bezug auf Zug-, Druck-, Biegungs- und Schubfestigkeit sowie in Hinsicht auf Zug-, Druck- und Biegungselastizität, Allgemeines Gesetz der elastischen Dehnungen, Zeitschr. des Vereines deutscher Ingenieure 1897, S. 241 (Sandstein bei Druck, 1900, S. 1169). [11] Martens, Handbuch der Materialienkunde für den Maschinenbau, I, Berlin 1898, S. 31, 66, 82, 109, 119. [12] Kick, Ueber den Einfluß der Schmiermittel auf die Formänderung bei Druckversuchen und auf den Reibungskoeffizienten, Techn. Blätter 1902, S. 10. [13] Bach, Elastizität und Fertigkeit, Berlin 1902, S. 13, 142. [14] Tetmajer, Die angewandte Elastizitäts- und Festigkeitslehre, Leipzig und Wien 1904, S. 8, 174, 197. [15] Handbuch der Architektur, 1. Teil, Bd. 1, Heft 1: Die Technik der wichtigsten Baustoffe, Stuttgart 1905, S. 235.
Weyrauch.
Buchempfehlung
Das chinesische Lebensbuch über das Geheimnis der Goldenen Blüte wird seit dem achten Jahrhundert mündlich überliefert. Diese Ausgabe folgt der Übersetzung von Richard Wilhelm.
50 Seiten, 3.80 Euro
Buchempfehlung
Romantik! Das ist auch – aber eben nicht nur – eine Epoche. Wenn wir heute etwas romantisch finden oder nennen, schwingt darin die Sehnsucht und die Leidenschaft der jungen Autoren, die seit dem Ausklang des 18. Jahrhundert ihre Gefühlswelt gegen die von der Aufklärung geforderte Vernunft verteidigt haben. So sind vor 200 Jahren wundervolle Erzählungen entstanden. Sie handeln von der Suche nach einer verlorengegangenen Welt des Wunderbaren, sind melancholisch oder mythisch oder märchenhaft, jedenfalls aber romantisch - damals wie heute. Michael Holzinger hat für den zweiten Band eine weitere Sammlung von zehn romantischen Meistererzählungen zusammengestellt.
428 Seiten, 16.80 Euro