Geometrie

[600] Geometrie (griech., Erdmessung), die Lehre von den Eigenschaften der räumlichen Gebilde. Ursprünglich aus den praktischen Bedürfnissen des Feldmessens hervorgegangen, ist die G. der ältere der beiden Zweige (G. und Analysis), in die sich die Mathematik (s.d.) teilt, und besitzt bereits in der ersten uns erhaltenen Darstellung, der des Eukleides (s. d. 3), eine Vollkommenheit, die fast unbegreiflich erscheint, weil wir über die Vorgänger Euklids so gut wie nichts wissen. Man unterscheidet theoretische und praktische (angewandte) G. Die theoretische wiederum teilt man ein in reine oder synthetische G. und in analytische G. im weitesten Sinne des Wortes, jene untersucht die räumlichen Gebilde und die zwischen ihnen bestehenden Beziehungen unmittelbar, indem sie sich die Gebilde vorstellt oder durch Figuren veranschaulicht, diese drückt die Eigenschaften der räumlichen Gebilde und deren Beziehungen untereinander durch Zahlen und Gleichungen aus und benutzt die Hilfsmittel der Analysis (s.d.). Die ältere Form der reinen G. ist die gewöhnliche (euklidische) G.; sie beschränkt sich entweder auf die Ebene, also auf ein Gebiet von zwei Dimensionen (s. Dimension), und heißt dann Planimetrie, oder sie bewegt sich in dem ganzen Raume von drei Dimensionen und heißt Stereometrie; außerdem kann man noch von einer G. auf der Geraden, also in einem Gebiete von einer Dimension reden (Longimetrie). Die euklidische G. betrachtet die geometrischen Gebilde als der Größe nach vergleichbar, also meßbar: jede Linie hat eine bestimmte Länge, jeder Winkel eine bestimmte Größe, jeder Flächenraum einen bestimmten Inhalt etc. Sie ist daher eine G. des Maßes (metrische G.). Dasselbe ist der Fall mit der von Lobatschefskij und J. Bolyai entwickelten nichteuklidischen G., die sich von der euklidischen nur durch die Nichtbenutzung des Parallelenaxioms (s.d.) unterscheidet. In einem gewissen Gegensatz zu beiden steht die G. der Lage, die von Größenverhältnissen ganz absieht und une die gegenseitige Lage der räumlichen Gebilde ins Auge faßt; diese hat sich erst im 19. Jahrh. durch Poncelet, Steiner und besonders v. Staudt zu einer selbständigen Wissenschaft entwickelt und wird auch neuere G., synthetische G. (im engern Sinn), projektivische oder besser projektive G. genannt. Es hat sich aber schließlich herausgestellt, daß die projektive G. den Schlüssel zum Verständnis der nichteuklidischen G., ja der metrischen G. überhaupt liefert, weil sie nämlich sowohl die euklidische als die nichteuklidische G. umfaßt. Man verdankt diese Erkenntnis Cayley und besonders F. Klein. Endlich bildet einen Zweig der reinen G. auch noch die darstellende oder deskriptive G., zu deren Entwickelung die praktische Unmöglichkeit geführt hat, räumliche Konstruktionen im Raume selbst auszuführen. ihr Verfahren besteht darin, daß sie die räumlichen Konstruktionen durch Konstruktionen in der Ebene ersetzt; sie bildet für alle Gebiete der Technik ein unentbehrliches Hilfsmittel; in ein System gebracht ist sie zuerst durch Monge. Die analytische G. im allgemeinsten Sinn, also die Anwendung der Rechnung auf G., war bei den alten Griechen noch ganz unentwickelt; diese lösten sogar umgekehrt analytische Aufgaben (z. B. Gleichungen zweiten Grades) auf geometrischem Weg. Erst mußte die algebraische Zeichensprache zu einer gewissen Vollkommenheit gediehen sein, bis man die ungeheure Fruchtbarkeit eines solchen Verfahrens erkennen und verwerten konnte. Ein erster Schritt auf diesem Wege war die Dreiecksberechnung oder Trigonometrie (s.d.), um deren Entwickelung sich besonders die Araber verdient gemacht haben. Den wichtigsten Schritt tat jedoch Descartes, der den Begriff der Koordinaten (s.d.) ein führte und dadurch die Koordinatengeometrie oder analytische G. im engern Sinne schuf. Diese stellt die Punkte durch Zahlen (die Koordinaten) dar und die Kurven und Flächen durch Gleichungen zwischen den Koordinaten, sie leitet aus den gefundenen Gleichungen neue ab, deutet diese wieder geometrisch und gelangt so zu neuen Eigenschaften der untersuchten Gebilde. Descartes selbst war im wesentlichen noch auf die elementaren Hilfsmittel der Algebra beschränkt, und noch heutzutage versteht man unter analytischer G. schlechthin häufig bloß den Teil der Koordinatengeometrie, der mit diesen Hilfsmitteln behandelt werden kann: bei den in Deutschland erschienenen Lehrbüchern der analytischen G. ist das fast durchweg der Fall. Ins Ungemessene erweitert wurde aber die Anwendbarkeit der Descartesschen Methode durch die von Newton und Leibniz erfundene Differential- und Integralrechnung, aus der sich die moderne höhere Analysis entwickelt hat. So entstand, namentlich unter den Händen von Euler, Monge, Gauß und deren Nachfolgern, ein ganz neuer Zweig der analytischen G., die Differentialgeometrie, die sich mit den allgemeinen Eigenschaften der Kurven und Flächen beschäftigt. Daneben entwickelte sich unter dem Einfluß der modernen Algebra und besonders der Invariantentheorie eine G. der algebraischen Kurven und Flächen, die man wohl auch zusammen mit der Differentialgeometrie als höhere G. bezeichnet im Gegensatz zu der elementaren G., zu der man die euklidische G. und die analytische G. im Stile von Descartes rechnet. Eine Abart dieser G. ist die abzählende G., die allgemeine Regeln aufzustellen sucht, nach denen man bestimmen kann, wie viele Punkte oder algebraische Kurven von bestimmter [600] Beschaffenheit etc. gewissen Bedingungen genügen. Einen interessanten Versuch, die Koordinaten ganz aus der G. zu verbannen, machte Graßmann 1844 in seiner Ausdehnungslehre, die mit den Punkten, Geraden und Ebenen selbst rechnet, statt mit Zahlen. Seine Ausdehnungslehre ist zugleich das erste Beispiel der G. im Raume von n-Dimensionen, die durch die Anwendung der Analysis auf die G. geradezu gefordert wird (vgl. Dimension) und die in den letzten Jahrzehnten immer mehr an Wichtigkeit gewonnen hat. – Der theoretischen G. gegenüber steht die angewandte oder praktische G.: Feldmeßkunst und Eichung. Die höhere Feldmeßkunst, bei der die auszumessenden Gebiete so groß sind, daß die Krümmung der Erdoberfläche berücksichtigt werden muß, heißt Geodäsie (s.d.). – G. der Bewegung nennt man häufig die Kinematik (s.d.).

Grundbegriffe und Grundlagen der G. Die Grundbegriffe, mit denen die G. arbeitet, Körper, Fläche, Linie und Punkt (vgl. die einzelnen Artikel), sind zwar aus der Erfahrung abgeleitet, existieren aber genau genommen nur in unserm Denken. Zu untersuchen, wie sie zustande kommen, ist nicht Sache der G., sondern der Philosophie, besonders der Psychologie. Dasselbe gilt von den besondern Begriffen. gerade Linie (s.d.) und Ebene (s.d.), für die man noch keine befriedigenden Definitionen hat. Die G. braucht auch keine solchen Definitionen, sondern sie verfährt so, daß sie diesen Begriffen gewisse Eigenschaften zuschreibt, aus denen sich weitere Schlüsse ziehen lassen. Die betreffenden Eigenschaften sind die sogen. Axiome (Forderungen), welche die G. aufstellen muß, um überhaupt etwas machen zu können. In der Wahl der Axiome hat sie große Freiheit, nur darf sich aus den gewählten Axiomen kein Widerspruch mit den Gesetzen des logischen Denkens ergeben, und anderseits müssen die Folgerungen, die man aus den Axiomen zieht, mit der Erfahrung übereinstimmen, wenn die G. auf die außer uns vorhandene Welt anwendbar bleiben soll. Der älteste Versuch, einen abgeschlossenen Kreis (ein System) solcher Axiome aufzustellen, auf Grund deren die G. aufgebaut werden kann, ist von Eukleides (s. d. 3) in seinen Elementen gemacht. Man findet da fünf Axiome: 1) Durch je zwei Punkte ist eine Gerade bestimmt. 2) Jede begrenzte Gerade kann verlängert werden. 3) Mit jedem Mittelpunkt und Halbmesser läßt sich ein Kreis beschreiben. 4) Alle rechten Winkel sind einander gleich. 5) Das Parallelenaxiom (s.d.). Dazu kommen noch gewisse Grundsätze, die sich auf die Betrachtung von Größen überhaupt beziehen, die also nicht bloß der G., sondern der ganzen Mathematik angehören, endlich das Kongruenzaxiom (s. Kongruenz) in der Form: »Was zur Deckung miteinander gebracht werden kann, ist einander gleich« und ein Axiom, das wahrscheinlich von Späteren eingeschoben ist: »Zwei gerade Linien schließen keinen Raum ein«. So meisterhaft die Entwickelung der G. ist, die Euklid auf dieser Grundlage gegeben hat, so blieben doch immer noch die Fragen offen, erstens ob diese Axiome wirklich alle erforderlich sind, ob also keines aus den übrigen folgt, und zweitens, ob nicht später im Verlaufe der Untersuchung stillschweigend Axiome benutzt werden, die eigentlich ausdrücklich hätten ausgesprochen werden müssen. Die erste Frage ist immer wieder von neuem bei dem Parallelenaxiom gestellt worden, bis man endlich erkannte, daß dieses zur Begründung der Euklidischen G. unentbehrlich ist, daß man es aber auch fallen lassen kann und dann zu einer neuern, der von Lobatschefskij und J.Bolyai begründeten nichteuklidischen G. kommt. Die zweite Frage ist unbedingt zu bejahen, denn Euklid setzt z. B. stillschweigend voraus, daß die gerade Linie eine unendliche Länge hat. Riemann hat zuerst gezeigt, daß man auch dieses Axiom fallen lassen kann und dann eine von der Lobatschefskij-Bolyaischen G. verschiedene nichteuklidische G. erhält, bei der die Winkelsumme im Dreieck größer als zwei Rechte ist. Ein Beispiel einer solchen G. liefert übrigens schon die G. auf der Kugelfläche (die sphärische G.). Die Untersuchung über die zum Aufbau der G. notwendigen und hinreichenden Axiome ist besonders durch Riemann, Helmholtz und Lie gefördert worden, neuerdings aber durch Hilbert zu einem gewissen Abschluß gebracht. Die von Kant ausgesprochene Ansicht, daß die Sätze der Euklidischen Geometrie »synthetische Urteile a priori« seien, und daß der Raum nur Form unsrer Anschauung sei, ist durch die Möglichkeit der nichteuklidischen G. endgültig widerlegt.

Über die Geschichte der G. vgl. Mathematik. Ausführliche Darstellungen geben: M. Cantor, Vorlesungen über Geschichte der Mathematik (2. Aufl., Leipz. 1894–1901, 3 Bde.); Zeuthen, Geschichte der Mathematik im Altertum und Mittelalter (Kopen h. 1896) und im 16. und 17. Jahrhundert (Leipz. 1903); Loria, Die hauptsächlichsten Theorien der G. (deutsch von Schütte, das. 1888). Eine Übersicht der verschiedenen Ansichten über den Ursprung der geometrischen Begriffe und Axiome findet man bei B. Erdmann, Die Axiome der G. (Leipz. 1877), und eine Zusammenstellung der zahllosen Versuche zur Erklärung der Begriffe Gerade, Winkel, Ebene etc. bei Schotten, Inhalt und Methode des planimetrischen Unterrichts (das. 1890–93, 2 Bde.). Die Untersuchungen über die Grundlagen der G. und über die verschiedenen Arten der G. hat Killing zusammenhängend dargestellt: »Einführung in die Grundlagen der G.« (Paderb. 1893–98, 2 Bde.); doch hat er die ungemein wichtige Arbeit von Hilbert, Grundlagen der G. (Leipz. 1899, 2. Aufl. 1903), noch nicht berücksichtigen können. – Die Lehrbücher über die einzelnen Gebiete der G. sind äußerst zahlreich. Wir erwähnen die Lehrbücher der Planimetrie von Brockmann, Henrici und Treutlein, die der Stereometrie von Servus, Holzmüller, die der darstellenden G. von Wiener, Rohn u. Papperitz, Gerland, Sturm, die der projektiven G. (G. der Lage) von Bobek, Reye, Böger, Enriques. Zur Einführung in die nichteuklidische (absolute) G. ist geeignet: Stöckel u. Engel, Die Parallelentheorie (Leipz. 1895); Lobatschefskij, Zwei geometrische Abhandlungen (deutsch von Engel, das. 1899), in die G. der Räume von mehr als drei Dimensionen: Schoute, Mehr dimensionale G. (Bd. 1, das. 1902). Die elementare analytische G. der Ebene und des Raumes behandeln die Lehrbücher von Ganter u. Rudio, Schur, Dziobek; die höhere G. Clebsch-Lindemann, Vorlesungen über G. (Leipz. 1876–91, 2 Bde.) und die von Fiedler deutsch bearbeiteten Lehrbücher von Salmon (s.d.); die Differentialgeometrie. Darboux, Leçons sur la théorie des courbes et surfaces (Par. 1887–96, 4 Bde.); Bianchi, Differentialgeometrie (deutsch von Lukat, Leipz. 1899); Scheffers, Anwendung der Differential- und Integralrechnung auf G. (das. 1901 bis 1902, 2 Bde.); V. und K. Kommerell, Theorie der Raumkurven und Flächen (das. 1903, 2 Bde.).

Quelle:
Meyers Großes Konversations-Lexikon, Band 7. Leipzig 1907, S. 600-601.
Lizenz:
Faksimiles:
600 | 601
Kategorien:

Buchempfehlung

Schnitzler, Arthur

Blumen und andere Erzählungen

Blumen und andere Erzählungen

Vier Erzählungen aus den frühen 1890er Jahren. - Blumen - Die kleine Komödie - Komödiantinnen - Der Witwer

60 Seiten, 5.80 Euro

Im Buch blättern
Ansehen bei Amazon

Buchempfehlung

Große Erzählungen der Frühromantik

Große Erzählungen der Frühromantik

1799 schreibt Novalis seinen Heinrich von Ofterdingen und schafft mit der blauen Blume, nach der der Jüngling sich sehnt, das Symbol einer der wirkungsmächtigsten Epochen unseres Kulturkreises. Ricarda Huch wird dazu viel später bemerken: »Die blaue Blume ist aber das, was jeder sucht, ohne es selbst zu wissen, nenne man es nun Gott, Ewigkeit oder Liebe.« Diese und fünf weitere große Erzählungen der Frühromantik hat Michael Holzinger für diese Leseausgabe ausgewählt.

396 Seiten, 19.80 Euro

Ansehen bei Amazon